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ABSTRACT 

 

Peter Gorsevski, Advisor 

 

 Predicting and mapping invasive wetland plant species is an important 

process for future management decisions and strategies. Controlling and mapping 

such plant species requires robust methods that are applicable at different ecological 

scales to map and monitor their spread. In particular, this study tested the feasibility of 

classification tree analysis (CTA) by using a high resolution Applanix 439 Digital 

Sensor System (DSS) aerial imagery (< 20 cm) and linear spectral unmixing (LSU) 

analysis by using Landsat Thematic Mapper (TM) data to produce different 

distribution maps of invasive flowering rush (Butomus umbellatus L.) potential in the 

Ottawa National Wildlife Refuge (ONWR) wetlands, in Northwest Ohio.  The 

classification accuracy from CTA maps derived from different splitting rules was 

evaluated by kappa statistics. The overall accuracy within the different runs varied 

between 35 to 56 % while the “Gini” splitting rule had the best performance. The 

endmembers from the best CTA performing map were utilized by the LSU method for 

estimating sub-pixel endmember fractions at a broader geographical scale. The results 

derived from the aerial imagery were slightly better than those from the Landsat 

imagery, as the goodness of fit between the flowering rush fraction map and the data 

measured in the field was lower. This study was intended to demonstrate the potential 

for flowering rush mapping over larger area using knowledge developed from smaller 

geographical scale using high resolution imagery. Results indicate that both methods 

show promising results for the prediction of flowering rush, but additional research  
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that encompass  different field data collection techniques,  datasets of imagery and 

modeling methods need to be explored.  
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INTRODUCTION 

Flowering rush (Butomus umbellatus L.) is an invasive species introduced from temperate 

Europe and Asia that is becoming a major concern across North America. Climatic change, 

international trade, land conversion and grazing are all anthropogenic related disturbances that 

are likely to promote the spread of invasive plant species, thus creating a major challenge for 

land managers and ecologists (Underwood et al., 2003). Invasive species like the flowering rush 

have the ability to spread quickly and thus threaten the persistence of native flora and fauna, 

natural biodiversity and recreational and commercial activities (Joshi et al., 2004; Antonio et al., 

2004; Brown and Eckert 2005). An example of this is the threat to native littoral species such as 

Zizania aquatic, also known as wild rice, an economically important plant in the Great Lakes. 

The invasion that can occur in wild rice habitat often requires the use of herbicides and can have 

adverse impact on the entire ecosystem (Brown and Eckert 2005; Johnson et al., 2008).  Some 

estimates by the United States Department of Agriculture (USDA) suggest an economic loss of 

approximately $137 billion dollar per year on the control of invasive species in the country; 

approximately $35 billion annual cost for just invasive plants (Ustin et al., 2002; Windle et al., 

2008). Costs associated with the control of wetland weeds alone are to be estimated around $145 

million dollars a year (Lavoie et al., 2003).  

Flowering rush is an aquatic plant which comes from a monotypic family with emergent 

and fully submerged phenotypes, found in littoral lake habitats, rivers and ditch edges and other 

shallow wetland environments (Eckert et al. 2000; Kliber and Eckert 2005). The plant is easily 

identified by its whitish, pink flowering umbel and its spirally twisted leaf tips. It can be 

recognized by its three pink colored sepals and three large petals on a long pedicle arising from 
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the flowering stalk and can grow to about five to six feet in height (Johnson et al., 2008; Rice 

and Dupuis 2009). The leaves have distinctive triangular cross-sections where rigid vertical 

leaves are characteristic for the emerged phenotype and lax leaves that wave in the current are 

characteristic for the submerged phenotype. Flowering rush can be found in shallower areas such 

as along shorelines but can also be found in deeper water of lakes and rivers (Johnson et al., 

2008). For example, Rice et al., (2010) reported that in clear oligotrophic environment such as 

the Flathead Lake in Montana flowering rush colonies exist in deep waters up to 20 foot. The 

sexual seed reproduction of the plant is combined with clonal reproduction via vegetative bulbils 

(Kliber and Eckert 2005; Rice and Dupuis 2009).  

Literature suggest that flowering rush was first introduced into North America by export 

as horticultural plants from the Netherlands (Kliber and Eckert 2005; Rice and Dupuis 2009). 

Flowering rush was first recorded on the Saint Lawrence River in Eastern Canada in 1897 

(Kliber and Eckert 2005) and quickly infested the northern part of the United States. Flowering 

rush then quickly spread into Eastern Lake Ontario and Lake Champlain over a time period of 30 

years (Brown and Eckert 2005). Today flowering rush invades western states and provinces 

along the Canada/USA border such as Idaho, Oregon and Washington (Brown and Eckert 2005; 

Johnson et al., 2008; Rice and Dupuis 2009). Early detection and rapid assessments of the 

distribution and abundance of this species is crucial as it could indicate where these species may 

occur in the following spring (Santos et al., 2011).  

 However, within this broad geographical extent the invasion of flowering rush varies 

among different environments and factors, which drive the invasion across the country and 

present significant problems for managers and decision makers. Such problems require accurate 

mapping and monitoring for locating and controlling flowering rush and other invasive 
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communities over this large area. Remote sensing techniques for mapping invasive species have 

been used successfully at different spatial and temporal scales (Ustin et al., 2002; Turner et al., 

2003; Joshi et al., 2004; Lawrence et al., 2005; Lass et al., 2005; Adam et al., 2010; He et al., 

2011).  Examples of successful mapping application by hyperspectral remote sensing sensors 

(i.e., Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), PROBE-1, Digital Compact 

Airborne Spectrographic Imager (CASI), and Hyperion include detection of the following 

invasive species: jubata grass (Underwood et al., 2003), Brazilian pepper (Lass and Prather 

2004), and spotted knapweed and babysbreath (Lass et al., 2005).  Multispectral remote sensing 

has also been a valuable tool for species detection due to its ability to record the intensity of 

reflected light at specific spectral wavelengths in the electromagnetic spectrum. Multispectral 

techniques simplify the complexity of the spectral reflectance curves for targeted plant species 

and communities (Turner et al., 2003; Joshi et al., 2004; Lass et al., 2005; Lawrence et al., 2006). 

Multispectral data from commercial satellites used for detection of invasive species include 

platforms such as Landsat TM/ETM+, ASTER, SPOT, IKONOS and Quickbird (Chong et al., 

2001; Fuller 2005; Everitt et al., 2005; Bradley and Mustard 2006; D’iorio et al., 2007; Ghioca-

Robrecht et al., 2008). Applications of high-spatial resolution imagery from IKONOS and 

Quickbird have been used to detect giant salvinia (Everitt at al., 2007) and malaleuca trees 

(Malaleuca quinquenervia) (Fuller 2005). Also, Landsat TM/ETM+ and Landsat MSS imagery 

has been used for mapping the spatial extents of the nonnative cheatgrass (Bradley and Mustard 

2006), leafy spurge (Mladinich et al., 2006), and for the detection of spatial and temporal 

changes in semi-arid wetlands (Schmid et al., 2004). ASTER and SPOT imagery have been used 

for mapping invasive mangrove distributions (D’iorio et al., 2007), forest degradation (Souza et 
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al., 2003), and for classifying and mapping both native and nonnative rangeland plant 

communities (Clark et al., 2001).  

However, the success of those satellite-based methods requires adequate population 

density of invasion for extracting accurate spectral detail (Turner et al., 2003; Lass et al., 2005; 

Evangelista et al., 2009) which is not the case with the flowering rush. On the other hand, aerial 

imagery can yield more detail than satellite imagery but they are often impractical for large area 

mapping and monitoring (Harvey and Hill 2001; Underwood et al., 2003; Everitt et al., 2004; 

Mladinich et al., 2006; Morgan et al., 2010; Grapentine and Kowalski 2010; He et al., 2010). 

Both satellite and aerial imagery often utilize Global Positioning System (GPS) for mapping the 

target area, ground truthing, and building correlations between the observed flowering rush and 

the imagery (Everitt et al., 2004; Mladinich et al., 2006; D’iorio et al., 2007). Although such 

methods provide high accuracies, they are still time consuming, labor intensive, and are only 

applicable for smaller management areas or collection of datasets for validation purposes (Lass 

et al., 2005; Lawrence et al., 2006; Mladinich et al., 2006; He et al., 2010; Tuanmu et al., 2010). 

Many different mapping techniques have been explored for detecting invasive species 

using aerial imagery or Landsat TM such as neural network (Joshi et al., 2006; Wang et al., 

2009), multiple endmember spectral mixture analysis (Wu 2004; Kärdi 2007), maximum 

likelihood (Ustin et al., 2002; Yang et al., 2011), Support Vector Machine (SVM) (Kelly et al., 

2007; Yang et al., 2011), Spectral Angle Mapper (SAM) (Yang et al., 2011), and classification 

tree analysis (CTA) (Yuan et al., 2005; Andrew and Ustin 2008). CTA is a modern statistical 

technique that is ideal for the analysis of complex ecological data (De’ath and Fabricius 2000).  

It is a rule based classification of remotely sensed imagery and is useful in analyzing large data 

sets with complex structure without making distributional assumptions (Zambon et al., 2006; 
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Wright and Gallant 2007). The classification tree provides a variation of single response 

variables by repeatedly splitting the data into homogenous groups. Results however, are simple 

and easy to interpret.  Also, more recent techniques such as linear spectral unmixing (LSU) 

(Peterson and Stow 2003; Miao 2006; Zhang et al., 2011) allows the quantification of sub-pixel 

abundance of species coverage from Landsat TM satellite imagery. The sub-pixel analyses are 

intended to provide the relative abundance of species from mixed pixels that result from a 

systematic combination of component spectra present especially when dealing with medium to 

coarse resolution satellite images. However, there are many other site specific challenges such as 

data availability, availability of time series, spatial or spectral data properties, cost constraints, 

and population density that complicate the mapping and the monitoring of invasive species 

spread using specific mapping procedures.  

This thesis presents a suitable procedure to use high-spatial resolution from aerial 

imagery and moderate resolution from Landsat TM imagery for mapping flowering rush. In 

particular, the approach presented here included testing the applicability of CTA and LSU for the 

prediction of flowering rush.  Specifically, a high resolution imagery of the ONWR was acquired 

to extract endmembers through CTA and obtain representative pixels from homogenous land 

covers. These results were then used for broad scale prediction using LSU.  The proposed 

approach is demonstrated using a case study in the Ottawa National Wildlife Refuge (ONWR) 

wetlands, in Northwest Ohio. The CTA and LSU modeling approaches are presented in Section 

2. Section 3 discusses the study area and the methodology applied in this study, while Section 4 

discusses the results and the conclusions from this approach.  
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1. MODELING THEORY  

1.1 Classification Tree Analysis (CTA) 

 The use of CTA or also known as classification and regression tree analysis (CART) in 

remote sensing and digital processing applications has been rapidly increasing (DeFries and 

Chan 2000; Lawrence et al., 2004; Zambon et al., 2006). CTA is a type of machine learning 

algorithm that has been successfully used for classification and regression problems of 

multispectral and hyperspectral imagery (Lawrence et al., 2004; Xu et al., 2005; Laliberte et al., 

2007).  The results of CTA are often in the form of an easily interpretable dichotomous tree that 

can be used as classification rules either by themselves or combined with expert knowledge 

(Lawrence et al., 2004). CTA can handle continuous and categorical information equally well 

and has resulted in higher accuracies than other methods such as maximum likelihood classifiers 

and linear discriminant function classifiers (Lawrence et al., 2004; Zambon et al., 2006; Laliberte 

et al., 2007).  

A decision tree is composed of a root node which contains all the data, a set of internal 

nodes, also known as splits, and a set of terminal nodes or leaves (Xu et al., 2005). In use, the 

decision tree splits a dataset into increasingly homogenous subsets until terminal nodes are 

determined (Laliberte et al., 2007). CTA typically operates based on binary decisions that are 

made at each node. These binary splitting measures are applied to explanatory variables such as 

spectral responses (Lawrence et al., 2004; Xu et al., 2005). Furthermore, there are splitting rules 

associated with each split. There are several splitting rules that are widely available in current 

software implementations, such as Idrisi Taiga (Eastman 2006), of CTA for creating decision 

trees. Common splitting rules include: entropy, gain ratio, and Gini (Zambon et al., 2006; 

Eastman 2006). The method used is an important aspect of image classification as it controls the 
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pace of improvement in predictive accuracy (Gao 2009). First, entropy is a measure of impurity 

and therefore selects the attribute with the minimum entropy to divide the data set (Huang and 

Jensen 1997; Jin and Agrawal 2003). Entropy is becoming one of the most popular impurity 

functions when performing tree classification (Jin and Agrawal 2003). Entropy measures the 

degree of disorder or heterogeneity in an image and therefore provides a measurement of the 

impurity in the data set (Jin and Agrawal 2003; Laliberte et al., 2007). It is defined as: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) =  −�𝑝𝑖
𝑖

𝑙𝑜𝑔2𝑝𝑖 Eq. (1) 

 

where pi is the relative frequency of class label i at node t (Jin and Agrawal 2003). The main aim 

of the entropy algorithm is to split and group the data by minimizing the within group diversity 

where the rule is associated with expected value of the minimized negative log-likelihood of a 

given split result.   

One of the drawbacks in the entropy algorithm is oversplitting because its preference is to 

use attributes with large number of branches (i.e., unique values determine classes).  To 

overcome this potential bias the gain ratio algorithm is applied which intends to normalize the 

process. The gain ratio measures the reduction in entropy in the data produced by a split; the 

subdivision of the data that maximizes the reduction in entropy of the descendant node is how 

each final node is selected (DeFries and Chan 2000). The gain ratio is calculated into two stages. 

First, the information gain is calculated for all attributes as: 
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𝐺𝑎𝑖𝑛(𝑡) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) −  �
|𝑡𝑖|
|𝑡|

𝑛

𝑖=1

 ×  𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑡𝑖) Eq. (2) 

 

where the information gain of a single classification t is defined as the entropy after classification 

t and the sum of the entropy of each subset ti, is weighted by its proportion |ti| / |t| which is used 

for normalization and accounting for large number of splits. The split information is defined as: 

 

 

 

which represents the potential information generated by dividing t into n subsets.  

Because information gain is not effective for some variables, dividing the information gain by 

the splitting information generates the gain ratio that tests for maximization of the information 

gain as:  

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝑋) =  𝑔𝑎𝑖𝑛(𝑋) 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑓𝑜(𝑋)⁄  Eq. (4) 

Lastly, the Gini impurity is a measure of heterogeneity where the impurity measure at node t is 

defined as: 

𝐺𝑖𝑛𝑖(𝑡) =  �𝑝𝑖(1 − 𝑝𝑖)
𝑖

 Eq. (5) 

where pi are the relative frequency of class i at node t that represents any parent or child node  at 

which a given split of the data is performed. The sequence of the Gini splitting algorithm is to 

first isolate the largest homogeneous category within the dataset before subsequent nodes are 

then segregated and further divisions are not possible (Laliberte et al., 2007).  

  

 𝑆𝑝𝑙𝑖𝑡info(𝑡) = −�
|𝑡𝑖|
|𝑡|

𝑛

𝑖=1

× 𝑙𝑜𝑔2  �
|𝑡𝑖|
|𝑡|
� Eq. (3) 
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1.2 Linear Spectral Unmixing (LSU) 

Linear spectral unmixing analysis is based on the concept that every image pixel is a 

mixture of different components that is based on the principle that reflectance recorded in each 

pixel is a weighted average of the reflectance from all endmembers in that pixel (Kärdi 2007; Lu, 

et al., 2003; Pacheco and McNairn 2010). A pixel is mixed by a number of different materials 

present in a scene called endmembers (Heinz and Chang 2001). Endmembers are a coherent set 

of spectra that represent physical components on the surface but also model the spectral 

variability inherent to the scene (Gong et al., 1994; Elmore et al., 2000). The intent of the 

spectral unmixing is to estimate the fractional abundance of surface targets such as different 

vegetation classes at sub-pixel level. The unmixing process assumes that composite values 

measured by the sensor represent a linear combination of the spectra of all components within a 

pixel (Lu et al., 2003). Thus, if we know the spectral reflectance in each pixel it is possible to 

describe these mixed pixels as linear mixtures of the endmembers and estimate the best fitting 

combination of endmember fractions for the observed reflectance spectra (Small 2003). 

Unmixing of individual pixels is possible by estimating the fraction of each endmember in the 

composite reflectance of a pixel (Small 2001):  

∑
=

=
N

i
ii RfR

1
 

Eq. (6) 

where R is the effective reflectance of the mixed pixel, Ri is the reflectance of the ith material 

(endmember), fi is the spatial fraction covered by the ith material and N is the number of materials 

in the pixel.  

Spectral unmixing analysis has been widely used in remote sensing for various studies. 

Some of those studies include using linear spectral unmixing for monitoring long term vegetation 
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dynamics in Mediterranean rangelands (Hostert et al., 2003), evaluating remote sensing and 

spectral unmixing analysis for crop residue mapping (Pacheco and McNairn 2010), and for the 

unmixing of soils and vegetation (Asner and Lobell 2000).  
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2.  MATERIALS AND METHODS 

2.1 Study Area  

Ottawa National Wildlife Refuge (ONWR) is located along the western Lake Erie shore 

in Benton Township, Ottawa County in Northwest Ohio (Figure 1). The refuge consists of 

approximately 40.5 km2 (10,000 acres) of marshes, open water, wooded and coastal wetlands, 

shrub lands, grasslands, cropland, and an estuary. ONWR is known for its wide variety of plant 

and animal species and particularly for its critical migratory bird resting area (USFWS ONWR 

2011). The refuge has a rich biodiversity and significant habitat for migrating birds and has been 

identified by the American Bird Conservancy as an Important Bird Area (USFWS ONWR 2012). 

A 4 m opening in a dike along Lake Erie connects the marshes to the lake and protects the 

marshes from offshore waves. However, water levels are driven by Lake Erie conditions as well 

as precipitation events (Bowers et al., 2005; Grapentine and Kowalski 2010). Annual 

precipitation in Ottawa County is approximately 805 mm with February typically being the driest 

month and August the wettest (OSU Extension Fact Sheet 2012). Seasonal weather extremes are 

influenced by its close proximity to Lake Erie (Hamilton and Limbird 1982). The general area 

consists of poorly drained glacial lake plain deposits that are nearly flat and approximately 175 

m above sea level. 

 2.2 Data Acquisition 

 The field data collection used aerial imagery from July 2010 to aid the location of the 

plots followed by flowering rush in situ data collection that occurred during the last two weeks of 

July 2011. Another set of aerial imagery from August 2011 that coinciding with the field data 

collection was used for the spatial prediction analyses and accuracy assessments of the flowering 

rush. Both aerial imagery sets were cloud-free and acquired by an Applanix 439 Digital Sensor 
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System (DSS) (Mostafa, 2003). The DSS has ground sample distance of 0.16 m and a total of 3 

spectral bands (60 mm CIR) including blue/green 500-600 nm; green/red 600-720 nm; and 

red/NIR 850-1200 nm. The imagery was orthorectified by U.S. Fish and Wildlife Service 

(UFWS) using RapidOrtho software (Hogan, 2012) to the World Geodetic System 1984 (WGS 

84) datum and the Universal Transverse Mercator (UTM) zone 17 coordinate system. The aerial 

imagery was preprocessed using a dark object subtraction (DOS) atmospheric correction method 

to reduce the effects of atmospheric haze (Vincent et al., 2004).  DOS is where the minimum 

pixel values of a dark object are subtracted with an assumption that no energy is reflected from 

that dark object (Chavez 1988; Qi et al., 2000). 

A total of seven subset areas were extracted from the aerial imagery from July 2010 for 

the design of the sampling plots using a stratified-random approach.  Initially, the subset areas 

were predetermined and used by ONWR who classified these into homogenous subset areas of 

the following categories: flowering rush (FR), flowering rush mixed with water (H₂O), and 

flowering rush mixed with other vegetation (MIX). Exploratory data analysis showed that those 

three categories were broadly defined with significant occurrence in variation that may have 

been driven by previous mapping standards. Therefore, the subset areas were subjected to 

unsupervised iterative self-organizing data analysis (ISODATA) classification to ensure better 

sample representation and control of variation within each subset areas. The ISODATA 

technique used a minimal spectral distance algorithm to assign a total of three arbitrary classes 

within each subset areas. A minimum of 10 sample points were assigned to each subset area (a 

minimum of 3 points per class) in a stratified random pattern using ArcGIS software (ESRI 

2011). The geographic coordinates of each sampling point were extracted and a handheld 

Trimble Pathfinder GPS (GeoExplorer XH) receiver was used to navigate to the sample points 
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for subsequent data collection. The data collection used a 1 × 1 m quadrat placed on the ground 

or water where within each plot the percentage of flowering rush, water, and other vegetation 

cover was recorded. The categories were assigned based on the flowering rush abundance being 

greater than 50 % or assigned by the most dominant class.  Thus, 21 points were recorded as 

flowering rush, 44 points were recorded as flowering rush mixed with other vegetation, and 18 

points were recorded as flowering rush mixed with water. Figure 2 shows the original cover data 

for the 3 classes that was collected during the field data collection. First, Figure 2 shows that the 

median is above 90 % for the mixed vegetation cover (MIX) suggesting that the population of 

FR in this class is low. The boxplot for the H2O class shows that the FR population is sparse 

because the median percent cover is still above 80 %, therefore suggesting that water dominates 

in most of the points that represent this class. Finally, the percent cover for FR shows that the 

median percent cover from the field data collection is 75 %, and thus suggests that a majority of 

the points represent a FR monoculture.  

In addition, a Landsat TM scene from June 6, 2011 was used to determine the feasibility 

of broader scale mapping of flowering rush. While the spatial resolution of aerial imagery is very 

useful for detailed wetland mapping, the superiority of the spectral resolution of Landsat TM 

allows a collection of information for large geographic areas in a timely and costly effective 

manner. The scene used in this analysis covered Path/Row 20/31 in the spatial reference of 

Universal Transverse Mercator (UTM) 17N projection using a World Geodetic System (WGS) 

1984 datum. Landsat TM has a ground sample distance of 30 m and includes spectral band 1 

(0.45-0.52 µm), band 2 (0.52-0.60 µm), band 3 (0.63-0.69 µm), band 4 (0.76-0.90 µm), band 5 

(1.55-1.75 µm), band 6 (10.40-12.50 µm), and band 7 (2.08-2.35 µm). Landsat TM spectral 

bands two (green), three (red), four (near infrared), along with a Normalized Vegetation Index 
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(NDVI), and two ratio vegetation indices of RVI (gni), and RVI (rni) were chosen as inputs for 

the LSU. The first ratio vegetation index (RVI) was derived by dividing band 2 (green) by band 

4 (NIR), thus RVI (gni) = Green/NIR. The second ratio vegetation index was derived from band 

3 (red) divided by band 4 (NIR), therefore RVI (rni) = Red/NIR. These ratios were chosen 

because of their ability to separate vegetation from soil and water by combining surface 

reflectance at two or more wavelengths. Thus, high values will indicate healthy living vegetation 

because of the high reflectance in the near-infrared and low reflectance in the red regions of the 

spectrum. The Landsat TM data tested here does have an advantage over the high spectral 

resolution data, which includes its cost-free availability, its utility for mapping larger areas at a 

time, and its repeatability for monitoring purposes. Challenges associated with this type of data 

are misclassification of pixels due to land cover mixtures, and mapping abundances in heavily 

fragmented areas (Kumar et al., 2007). 

2.3 Data Analysis and Model Development 

For the development of the proposed model (Figure 3), the 2011 aerial imagery’s pixel 

size was resampled from 0.16 m to 1 m for it to match the 1 × 1 m quadrat for the field work 

collection. The CTA model was constructed using Idrisi Taiga software (Eastman 2009) and 

includes independent and dependent variables. The independent variables of 3 bands from the 

aerial imagery and a Normalized Difference Vegetation Index (NDVI) derived from the red and 

the near-infrared (NIR) bands. The significance of the NDVI is in its ability to highlight relevant 

vegetation changes because it absorbs strongly in the red wavelenghts of sunlight and reflects in 

the near-infrared wavelengths (Chen et al., 2004; Healey et al., 2005).  

The dependent variable used the field data collection and included a total of 83 

observation points categorized as FR, H₂O, and MIX classes. These three different categories are 
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also known as endmembers. The CTA was performed using different splitting rules while trees 

were pruned by removing leaves with observations less than a predetermined within class 

proportion of 2 %. The selection of splitting rules is the most important factor for the overall 

accuracy of the classification because decision trees often “over fit” the data; therefore the 

classification requires tree reduction or pruning for development of robust and parsimonious 

trees for image classification purposes (Brown de Colstoun et al., 2003; Lawrence et al., 2004; 

Zambon et al., 2006).  The kappa statistic was used to evaluate the accuracy of the classification 

tree. The kappa statistic considers all cells in a matrix and thus provides a correction for the 

proportion of chance agreement between the known sample points and the classification tree.  

Values of kappa can range from -1.0 to 1.0, where -1.0 indicates perfect disagreement below 

chance, 0.0 indicates agreement that is equal to chance, and 1.0 indicates perfect agreement 

above chance.  

The transformed divergence distance was then used to evaluate the spectral separability 

of the endmembers and to select the optimum subset of bands from the Landsat TM image. The 

transformed divergence is a measure of statistical distance between endmember pairs of interest 

and can provide information on their separability. Values of the transformed divergence distance 

can range from 0 to 2000 where anything less than 1700 is considered poor separation and 

anything greater than 1700 is considered good separation (Malik and Husain 2006).  The fraction 

maps were generated by performing LSU on the Landsat TM data. The ground data collection 

acquired in the field was used to validate the results of the LSU by correlating the image fraction 

maps to the data assessed on the ground.   
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3. RESULTS AND DISCUSSION 

3.1 Aerial imagery results  

The accuracy results of the multiple CTA runs, where every run represents a different 

splitting rule, are shown in Table 1 through the kappa coefficients of agreement. The table 

represents comparative accuracies ranging from 0.359 to 0.567 depending on their splitting rule 

and pruning level. The results from the table suggest that the best classification model was 

predicted by the Gini algorithm where the leaves were pruned with a proportion of less than 1.3 

%. The accuracy associated with this classification has a coefficient of agreement kappa (κ) of 

0.567 which was calculated for the overall error matrix of each classification. A kappa of 0.567 

can be interpreted as a moderate agreement between the imagery and the sample points (Eastman 

2006).  Accuracy of the decision tree was assessed by using a cross-tabulation and kappa 

statistics. A cross tabulation is a process that combines and summarizes data from two sources in 

the form of a contingency table (Campbell 2007). The tabulation shows the number of 

respondents which give a particular combination of replies, where in this study, it includes the 

total number of pixels corresponding to each combination of endmembers being compared.  In 

Table 1, kappa (κ) statistics seem to increase when decreasing the pruning percentage for both 

Entropy and Gini, however, Gini’s kappa statistics overall seem to remain higher. The Gini split 

type fits the data best because it finds the largest homogeneous category within the dataset and 

separates it from the remainder of the data (Zambon et al., 2006). Furthermore, Table 2 shows 

the producer’s accuracy (PA) and consumer’s accuracy (CA) for all three endmembers. The table 

shows how many pixels are correctly or incorrectly classified on the final map, as well as the 

error associated with this. The producer’s accuracy calculates how much of the ground 

vegetation type was correctly classified as that species and is a measure of omission error (EO). 
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The consumer’s accuracy, however, is a reliability measure and therefore a measure of 

commission error (EC). The CA indicates how likely that pixel classified on the map actually 

represents that category on the ground (Congalton 1991; Mladinich et al., 2006; Campbell 2007; 

Shao and Wu 2008). The producer accuracies for the CTA image ranged from 71.4 % (FR) to 

72.7 % (MIX) with omission errors of 27.6 % for FR and 31.8 % for MIX. This indicates a 

moderate probability of correctly assigning these subclasses on the ground to the corresponding 

category on the map. The consumer’s accuracy for correctly classifying the endmembers was 

84.2 % (MIX), 68.2 % (FR), and 56.5 % (H₂O). Commission errors associated with these are 

15.8 % for MIX, 31.8 % for FR, and 43.5 % for H₂O which suggests that those pixels classified 

on the map actually represent that category on the ground is moderate to high. Limitations 

associated with this form of accuracy assessment are that only data collection points are being 

used for validation purposes. Figure 4 shows the final classification tree (κ =0.567) that was used 

to classify FR, H₂O, and MIX using three bands green, red, and NIR), and a vegetation index 

(NDVI) from the aerial imagery. The final decision tree has 11 terminal nodes. The tree 

illustrates that a value from NDVI less than 0.3567 would be classified as MIX and thus would 

need additional conditions to detect the flowering rush. Furthermore, the tree shows that NDVI 

values ranging from 0.255 to 0.3567 will have the best chance of detecting FR, while for the NIR 

this includes values from 97.5 to 130.5 (Figure 4).  The map generated by the classification rules 

from Figure 4 is shown in Figure 5 and shows that the majority of the flowering rush can be 

found near ditches along roads, as well as near the edges of the sampling subset areas. Physical 

variability, including fluctuating water levels and management tools, can also have an effect on 

the locations of flowering rush. Figure 6 shows the results that were extracted from the final 

classification map in Figure 5. Figure 6 (a) shows the predicted locations for the three 
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endmembers within the subset areas. The figure shows that 28 % of the total pixels are predicted 

to be FR, while 30 % represents MIX, and 42 % is H2O. Figure 6 (b) shows the predicted 

endmember locations for the entire map. Out of the total pixels, it appears that 16 % is predicted 

to be FR, 41 % is H2O, and 43 % is MIX, respectively. Results suggest that the small percentage 

of FR could be influenced by the number of sampling points collected during field work and 

therefore making it more difficult to distinguish the flowering rush from other endmembers. In 

addition to including more sampling points, more specific information from the sample data is 

also required to acquire more accurate results. Lastly, collecting the data at a different time of the 

season, for example, when the flowers are in bloom versus when they are not, or adding 

additional endmembers to better distinguish the flowering rush from other vegetation, can also 

add to better accuracy and needs to be considered for future studies. 

3.2 Landsat TM results 

Figure 7 illustrates the scaled reflectance curve from Landsat TM band 2 (green), band 3 (red), 

band 4 (NIR), NDVI, RVI (rni), and RVI (gni). The x-axis represents the selected Landsat TM 

bands and the vegetation indices to illustrate the separability between the three endmembers. The 

vegetation indices were chosen because they produced the best separability. The y-axis illustrates 

the scaled reflectance (DN) values ranging from 0 to 256 because all layers are standardized to 

an unsigned 8-bit (256 range) data type. The visible spectrum associated with water  have low 

values because no light is being reflected back, however, this is dependent upon the water depth 

as clearer bodies of water can have higher reflectivity. For the NIR region water absorbs the 

light, therefore making it darker. Values greater than 0 can indicate that the sensor is detecting 

light reflected from an object depending on the bands. The illustrated graph of the spectral 

reflectance of these objects as a function of wavelength is termed the spectral reflectance curve. 
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This is important in determination of the wavelength regions to give insight into the spectral 

characteristics of these particular endmembers (Govender et al., 2007; Xie et al., 2008). The 

reflectance curve in Figure 7 shows that the separability between the endmembers is different 

across different bands and vegetation indices. For instance, the NDVI shows that the largest 

separability is between the MIX and the H2O. NDVI values for MIX and FR are significantly 

higher than H2O because the spectral reflectance is based on the chlorophyll absorption of the 

vegetation. Furthermore, RVI (gni) and RVI (rni) show a decrease in reflectance value because, 

although it separates vegetation from soil and water, it still lowers the value because the green 

and red portions of the spectrum have a low reflectance. Both RVI’s illustrate substantial 

separabilities among the endmembers. Table 3 quantifies the spectral separability between the 

three endmembers. The highest separability was associated with H2O and MIX (2000.0), while 

the lowest was associated with FR and MIX (1919.6), therefore indicating that the endmembers 

are clearly distinct from each other. This provides an indication of the ability to numerically 

classify the endmembers correctly, as well as to what degree of accuracy. Average class 

separability was 1971.8 and therefore considered good separability between endmembers.  

Figure 8 shows the percentage coverage per endmember in each pixel obtained from the 

LSU. The legend represents a measure of the percentage of cover (endmember) in each pixel 

expressed on a scale range between 0.0 and 1.0, with 0.0 indicating absence of the endmember 

and increasing values showing higher abundance. Overall, the distribution and abundance values 

show that vast majorities of high coverage percentage (1.0) for flowering rush are located outside 

of the sampling subset areas. This includes areas near the edges of the sampling subset areas and 

roads, where no sample points were collected. Therefore, in comparison to the CTA 

classification from the aerial imagery, where FR was also found outside of the sampling subset 
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areas, the LSU results do indicate some similar patterns as the CTA map. Figures 8 (a) and Table 

4 show that 90 % of the study area only has a 0 – 20 % likelihood of flowering rush being 

present, while only 4 % of the total pixels are in the 80 – 100 % likelihood of being present. 

Therefore, only a small area is associated with FR monoculture. Figures 8 (b) and Table 4 

however, shows that 51 % of the total MIX pixels are associated with 80 – 100 % coverage while 

43 % of the MIX pixels are associated with a probability 0 – 20 %. Similar to this is Figure 8 (c) 

and Table 4 where the majority of the H2O pixels (57 %) are associated with a low likelihood of 

being present (0 – 20 %) while 35 % is associated with a high likelihood of being present (80 – 

100 %). Figure 8 (d) represents the residual map and shows the error for each pixel showing 

higher errors in areas further away from where the sample points were taken. Also, when 

comparing the areas with higher errors to the aerial image, it is evident that they correspond to 

areas where high quantities of trees are present, and therefore unlikely for flowering rush to be 

present. Therefore it can be concluded that the highest uncertainty is with the MIX because of its 

close spectral reflectance to the FR, and because of higher residual values associated with areas 

where other vegetation is present. The LSU accuracy assessment for each fraction map was 

conducted by refitting the original field data set (Table 5). The table shows the number of sample 

points for each endmember corresponding to the coverage per pixel. Table 5 shows that 10 

sample points of FR are associated with a low percentage of coverage per pixel (0 – 20 %), thus 

indicating a disagreement between the sample points and the pixels from the fraction map. In 

addition, 3 sample points of FR are associated with a high coverage per pixel (80 – 100 %). 

Sample points that are found in areas of poor agreement with the pixels are forested areas where 

in fact, no flowering rush was observed. Thus, the LSU validation results suggest that a total of 3 

FR points were correctly classified while 10 were misclassified. For MIX however, 21 points are 
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correctly classified while 20 were misclassified. This indicates that the lack of data collection 

points is causing some uncertainty in the final results of LSU.  

Based on the information from the figures and tables, it is evident that the overall model 

fit is poor and needs significant improvements, however, this methodology had demonstrated the 

prospective for mapping flowering rush at broader geographical scale. Improving the accuracies 

of LSU can include collecting ground data simultaneously to the imagery, and using longer 

monitoring periods. Accuracies could be greatly affected by the fact that the Landsat TM image 

was obtained from June 6, 2011, while the aerial imagery along with the data collection was 

performed in late July. No other Landsat TM images were acquired due to cloud coverage and 

thus were unable to provide useful scenes. Field data collection was completed during the first 

two weeks of July when the flowering rush was in high bloom. In addition, seasonal variability 

also needs to be considered for additional research as it can effect the distribution of the 

flowering rush for the upcoming spring. Lastly, assigning endmembers in consultation with the 

sample data can be critical as it did help discern the affiliation between the predicted endmember 

classes and sample points that were used for validation of the LSU results.  
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4.  CONCLUSION 

This study evaluated the suitability of using CTA to map flowering rush at a small 

geographical scale (<20 cm) while LSU was used to obtain abundance fraction maps of 

flowering rush from broader scale imagery (30 m). This thesis used CTA to generate 

endmembers and obtain knowledge to extrapolate flowering rush to a broader scale using LSU. 

The approach used in this study provided different methodological ideas for distinguishing 

flowering rush at different scales but additional work is needed to fully understand the capability 

of the proposed approach. Both CTA and LSU provide an effective approach, further 

highlighting the applicability of remote sensing and vegetation indices for detecting flowering 

rush. 

The results indicate that aerial imagery coupled with classification tree analysis 

demonstrated its prospective for being an effective tool for mapping flowering rush across the 

study area. CTA results show a high potential for accurately mapping flowering rush and will be 

useful as a starter point when adopting more complex methodologies. Accuracy results show that 

the performance of the LSU technique was equitable for the predicting and mapping of flowering 

rush.  Challenges associated with this type of data include misclassification of pixels due to land 

cover mixtures, and the uncertainties in the endmember spectra measurements. Also, adequate 

population density is needed to obtain higher accuracy results from satellite based methods. Field 

data collection, however, showed that flowering rush does not ensure high density infestations 

and therefore could complicate the mapping process of flowering rush. By integrating additional 

datasets of satellite imagery (i.e. hyperspectral imagery), and including more accurate spectral 

measurements of scene endmembers could increase the accuracy for predicting and mapping 

flowering rush. Another possibility to higher accuracies could be including spectral 
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measurements of the pink flowers through a spectrometer as it could provide spectral uniqueness. 

However the focus in this research was to test an applicable method to detect and map flowering 

rush by using high resolution aerial imagery and multispectral imagery.  

Overall, this research indicates potential for successfully detecting and mapping 

flowering rush by using CTA for extracting endmembers and applying these to LSU to obtain 

fraction maps for predicting locations of flowering rush. Although these results are encouraging, 

more research is required to fully understand whether the CTA model and the LSU procedure are 

appropriate for extraction of endmembers from coarser resolution imagery. Uncertainties with 

this research included the field data collection, the different dates of the imagery acquisition, 

fusing these data together, and lastly the scale of the imagery. Also, this research was carried out 

during one season only and therefore the results are preliminary.  

 Based on this work and the discussion on how to improve the accuracy of this model, it 

is likely that this approach can result in yet higher classification accuracies. This would make 

satellite based imagery an even more attractive mapping tool for robust management and 

detection of invasive species across different spatial and spectral scales. 

   

 

 

 

 

 

 



24 
 

REFERENCES 

Adam, E.; Mutanga, O.; Rugege, D. 2010. Multispectral and hyperspectral remote sensing for 
identification and mapping of wetland vegetation: a review. Wetlands Ecology and 
Management 18: 281-296.  

 
Andrew, M.E.; Ustin, S.L. 2008. The role of environmental context in mapping invasive plants 

with hyperspectral image data. Remote Sensing of Environment 112: 4301-4317.  
 
Antonio, C. M. D.; Jackson, N.E.; Horvitz, C. C.; Hedberg, R. 2004. Invasive Plants in Wildland 

Ecosystems: Merging the study of invasion processes with management needs. The 
Ecological Society of America 2(10): 513-21.  

 
Asner, G.P.; Lobell, D.B. 2000. A Biogeophysical Approach for Automated SWIR Unmixing of 

Soils and Vegetation. Remote Sensing of Environment 74: 99-112.  
 
Bowers, R.; Sudomir, J.C.; Kershner, M.W.; de Szalay, F.A. 2005. The effect of predation and 

unionid burrowing on bivalve communities in a Laurentian Great Lake Coastal wetland. 
Hydrobiologia 545: 93-102.  

 
Bradley, B.A.; Mustard, J.F. 2006. Characterizing the Landscape Dynamics of an Invasive Plant 

and Risk of Invasion Using Remote Sensing. Ecological Applications 16(3): 1132-1147. 
 
Brown, J.S.; Eckert, C.G. 2005. Evolutionary increase in sexual and clonal reproductive capacity 

during biological invasion in an aquatic plant Butomus umbellatus Butomaceae). 
American Journal of Botany 92(3): 495-502. 

 
Brown de Colstoun, E.; Story, M.H.; Thompson, C.; Commisso, K.; Smith, T.G.; Irons, J.R. 

2003. National Park vegetation mapping using multitemporal Landsat 7 data and a 
decision tree classifier. Remote Sensing of Environment 85: 316-327.  

 
Campbell, J.B. Introduction to Remote Sensing. 4th ed. New York: The Guilford Press; 2007. 
 
Chavez, P., 1988, An improved dark-object subtraction technique for atmospheric scattering 

correction of multispectral data. Remote Sensing of Environment 24: 459-479. 
 
Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. 2004. A simple method 

for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay 
filter. Remote Sensing of Environment 91: 332-344.  

 
Chong, G.W.; Reich, R.M.; Kalkhan, M.A.; Stohlgren, T.J. 2001. New Approaches for Sampling 

and Modeling Native and Exotic Plant Species Richness. Western North American 
Naturalist 61(3): 328-335.  

 
Clark, P.E.; Seyfried, M.S.; Harris, B. 2001. Intermountain plant community classification using 

Landsat TM and SPOT HRV Data. Journal of Rangeland & Management 54: 142-160. 



25 
 

 
Congalton, R.G. 1991. A Review of Assessing the Accuracy of Classifications of Remote Sensed 

Data. Remote Sensing of Environment 37: 35-46.  
 
D’iorio, M.; Jupiter, S.D.; Cochran, S.A.; Potts, D.C. 2007. Optimizing Remote Sensing and GIS 

Tools for Mapping and Managing the Distribution of an Invasive Mangrove (Rhizophora 
mangle) on South Molokai, Hawaii. Marine Geodesy 30: 125-144.  

 
De’ath, G.; Fabricius, K.E. 2000. Classification and Regression Trees: A powerful yet simple 

technique for ecological data analysis. Ecology 81(11): 3178-3192.  
 
DeFries, R.S.; Chan, J.C. 2000. Multiple Criteria for Evaluating Machine Learning Algorithms 

for Land Cover Classification from Satellite Data. Remote Sensing of Environment 74: 
503-515.  

 
Eastman, R. J. 2006. IDRISI Andes. Clark Labs. 
 
Eastman, R.J. 2009. Idrisi Taiga Guide to GIS and Image Processing. Clark labs.  
 
Eckert, C.; Massonnet, B.; Thomas, J. J. 2000. Variation in sexual and clonal reproduction 

among introduced populations of flowering rush, Butomus umbellatus (Butomaceae). 
Canadian Journal of Botany 78: 437-446. 

 
Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. 2000. Quantifying Vegetation Change 

in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the 
Normalized Difference Vegetation Index. Remote Sensing of Environment 73: 87-102. 

 
ESRI. 2011. ArcGIS Desktop Help: Release 10. Redlands, CA: Environmental Systems 

Research Institute.  
 
Evangelista, P.H.; Stohlgren, T.J.; Morisette, J.T.; Kumar, S. 2009. Mapping Invasive Tamarisk 

(Tamarix): A Comparison of Single-Scene and Time Series Analyses of Remotely 
Sensed Data. Remote Sensing 1: 519-533.  

 
Everitt, J. H.; Yang, C.; Fletcher, R. S.; Davis, M. R. 2004. Using aerial color-infrared 

photography and QuickBird satellite imagery for mapping wetland vegetation. Geocarto 
International 19(4): 15–22. 

 
Everitt, J.H.; Yang, C.; Deloach, C.J. 2005. Remote Sensing of Giant Reed with Quickbird 

Satellite Imagery. Journal of Aquatic Plant Management 43: 81-85.  
 
Everitt, J.H.; Fletcher, R.S.; Elder, H.S.; Yang, C. 2007. Mapping giant salvinia with satellite 

imagery and image analysis. Environmental Monitoring and Assessment 139: 35-40.  
 



26 
 

Fuller, D.O. 2005. Remote detection of invasive Melaleuca trees (Melalueca quinquenervisa) in 
South Florida with multispectral IKONOS imagery. International Journal of Remote 
Sensing 26(5): 1057-1063.  

 
Gao, J. 2009. Digital Analysis of Remotely Sensed Imagery. The McGraw-Hill Companies. 351-

387.  
 
Ghioca-Robrecht, D.M.; Johnston, C.A.; Tulbure, M.G. 2008. Assessing the Use of Multiseason 

Quickbird Imagery for Mapping Invasive Species in a Lake Erie Costal Marsh. Wetlands 
28(4): 1028-1039.  

 
Gong, P.; Miller, J. R.; Spanner, M. 1994. Forest Canopy Closure from Classification and 

Spectral Unmixing of Scene Components—Multisensor Evaluation of an Open Canopy. 
IEEE Transactions on Geoscience and Remote Sensing 32(5): 1067-1080.  

 
Govender, M.; Chetty, K.;Bulcock, H. 2007. A review of hyperspectral remote sensing and its 

application in vegetation and water resource studies. Water SA 33(2): 145-152.  
 
Grapentine, J. L.; Kowalski, K. P.2010. Georeferencing Large-Scale Aerial Photographs of a 

Great Lakes Coastal Wetland: a Modified Photogrammetric Method. Wetlands 30: 369-
374.  

 
Hamilton, E. S.; Limbird, A. 1982. Selective Occurrence of a Arborescent Species on Soils in a 

Drainage Toposequence, Ottawa County, Ohio. The Ohio Journal of Science 82(5): 282-
292. 

 
Harvey, K.R.; Hill, G.J.E. 2001. Vegetation mapping of a tropical freshwater swamp in the 

Northern Territory, Australia: a comparison of aerial photography, Landsat TM and 
SPOT satellite imagery. International Journal of Remote Sensing 22(15): 2911-2925. 

 
He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. 2011. Benefits of hyperspectral remote 

sensing for tracking plant invasions. Diversity and Distributions 17: 381-392.  
 
He, M.; Zhao, B.; Ouyang, Z.; Yan, Y.; Li, B. 2010. Linear spectral mixture analysis of Landsat 

TM data for monitoring invasive exotic plants in estuarine wetlands. International Journal 
of Remote Sensing 31(16): 4319-4333.  

 
Healey, S.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. 2005. Comparison of Tasseled Cap-

Based Landsat data structures for use in forest disturbance detection. Remote Sensing of 
Environment 97: 301-310. 

 
Heinz, D.C.; Chang, C. 2001. Fully Constrained Least Squares Linear Spectral Mixture Analysis 

Method for Material Quantification in Hyperspectral Imagery. Transactions on 
Geoscience and Remote Sensing 39(3): 529-545.  

 



27 
 

Hogan, B. 2012. High Altitude Tactical Mapping with Applanix DSS. Applanix, a Trimble 
Company. 
http://calval.cr.usgs.gov/JACIE_files/JACIE08/2008_JACIE_DVD/Wednesday_AM/Ho
gan_DSS.pdf 

 
Hostert, P.; Röder, A.; Hill, J. 2003. Coupling spectral unmixing and trend analysis for 

monitoring of long-term vegetation dynamics in Mediterranean rangelands. Remote 
Sensing of Environment 87: 183-197.  

 
Huang, X.; Jensen, J.R. 1997. A Machine-Learning Approach to Automated Knowledge-Base 

Building for Remote Sensing Image Analysis with GIS Data. Photogrammetric 
Engineering & Remote Sensing 63(10): 1185-1194. 

 
Jin, R.; Agrawal, G. 2003. Efficient Decision Tree Construction on Streaming Data. 9th ACM 

International Conference on Knowledge Discovery and Data Mining (SIGKDD): 1-6. 
 
Johnson, M.; Rice, P.M.; Dupuis, V.; Ball, S. 2008 Addressing the Invasive Aquatic Flowering 

Rush (Butomus Umbellatus) in the headwaters of the Columbia River System-a multi-
partner, interdisciplinary project. Weeds Across Borders: 76-84. 

 
Joshi, C.; deleeuw, J.; van Duren, I.C. 2004. Remote Sensing and GIS applications for mapping 

and spatial modeling of invasive species. Proceedings of the XXth ISPRS Congress: Geo-
Imagery bridging continents 35: 669-677.  

 
Joshi, C.; Deleeuw, J.; Vanandel, J.; Skidmore, A.; Lekhak, H.; Vanduren, I.; Norbu, N. 2006. 

Indirect remote sensing of a cryptic forest understory invasive species. Forest Ecology 
and Management 225: 245-256.  

Kärdi, T. 2007. Remote sensing of urban areas: linear spectral unmixing of Landsat Thematic 
Mapper images acquired over Tartu (Estonia). Proceedings of the Estonian Academy of 
Sciences, Biology and Ecology 56(1): 19-32. 

 
Kelly, M.; Guo, Q.; Liu, D.; Shaari, D. 2007. Modeling the risk for a new invasive forest disease 

in the United States: An evaluation of five environmental niche models. Computers, 
Environment and Urban Systems 31: 689-710. 

 
Kliber, A.; Eckert, C.G. 2005. Interaction between founder effect and selection during biological 

invasion in an aquatic plant. Evolution 59(9): 1900-13. 
 
Kumar, U.; Kerle, N.; Ramachandra, T.V. 2007. Constrained Linear Spectral Unmixing 

Technique for Regional Land Cover Mapping Using MODIS Data. International Joint 
Conferences on Computer, Information, and System Sciences, and Engineering (CIS2E 
07): 1-8.  

 
Laliberte, A.S.; Fredrickson, E.L.; Rango, A. 2007. Combining Decision Trees with Hierarchical 

Object-oriented Image Analysis for Mapping Arid Rangelands. Photogrammetric 
Engineering & Remote Sensing 73(2): 197-207. 

http://calval.cr.usgs.gov/JACIE_files/JACIE08/2008_JACIE_DVD/Wednesday_AM/Hogan_DSS.pdf
http://calval.cr.usgs.gov/JACIE_files/JACIE08/2008_JACIE_DVD/Wednesday_AM/Hogan_DSS.pdf


28 
 

 
Lass, L. W.; Prather, T.S. 2004. Detecting the Locations of Brazilian Pepper Trees in the 

Everglades with a Hyperspectral Sensor. Weed Technology 18: 437-442.  
 
Lass, L.W.; Prather, T.S.; Glenn, N.F.; Weber, K.T.; Mundt, J.T.; Pettingill, J. 2005. A review of 

remote sensing of invasive weeds and example of the early detection of spotted 
knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a 
hyperspectral sensor. Weed Science 53(2): 242-251. 

 
Lavoie, C.; Jean, M.; Delisle, F.; Létourneau, G. 2003. Exotic plants species of the St. Lawrence 

River wetlands: a spatial and historical analysis. Journal of Biogeography 30: 537-549. 
 
Lawrence, R.; Bunn, A.; Powell, S.; Zambon, M. 2004. Classification of remotely sensed 

imagery using stochastic gradient boosting as a refinement of classification tree analysis. 
Remote Sensing of Environment 90: 331-336.  

 
Lawrence, R.L.; Wood, S.D.; Sheley, R. L. 2006. Mapping invasive plants using hyperspectral 

imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of 
Environment 100: 356-362. 

 
Lu, D.; Moran, E.; Batistella, M. 2003. Linear mixture model applied to Amazonian vegetation 

classification. Remote Sensing of Environment 87: 456-469.  
 
Malik, R.N.; Husain, S.Z. 2006. Land Cover Mapping: A remote sensing approach. Pakistan 

Journal of Botany 38(3): 559-570.  
 
Miao,X.; Gong, P.; Swope, S.; Ruiliang, P.; Carruthers, R.; Anderson, G.L.; Heaton, J.S.; Tracy, 

C.R. 2006. Estimation of yellow starthistle abundance through CASI-2 hyperspectral 
imagery using linear spectral mixture models. Remote Sensing of Environment 101: 329-
341.  

 
Mladinich, C.S.; Bustos, M.R.; Stitt, S.; Root, R.; Brown, K.; Anderson, G.L.; Hager, S. 2006. 

The Use of Landsat 7 Enhanced Thematic Mapper Plus for Mapping Leafy Spurge. 
Journal of Rangeland Ecology & Management 59(5): 500-506. 

 
Morgan, J.L.; Gergel, S.E.; Coops, N,C. 2010. Aerial Photography: A Rapidly Evolving Tool for 

Ecological Management. BioScience 60: 47-59.  
 
Mostafa, M.M.R.; 2003. Design and Performance of the DSS. Fritsch , D. (Ed.) proceedings, 49th 

photogrammetric week, Stuttgart, Germany, September 1-5: 77-87.  
 
Ohio State University Extension Fact Sheet (OSU Extension Fact Sheet). 2012. Food, 

Agricultural and Biological Engineering at http://ohioline.osu.edu/aex-fact/0480_87.html 
Accessed March 7, 2012. 

 

http://ohioline.osu.edu/aex-fact/0480_87.html


29 
 

Pacheco, A.; McNairn, H. 2010. Evaluating multispectral remote sensing and spectral unmixing 
analysis for crop residue mapping. Remote Sensing of Environment 114(10): 2219-2228. 

 
Peterson, S.H.; Stow, D.A. 2003. Using multiple image endmember spectral mixture anaylsis to 

study chaparral regrowth in southern California. International Journal of Remote Sensing 
24(22): 4481-4504. 

 
Qi, J.; Marsett, R.C.; Moran, M.S.; Goodrich, D.C.; Heilman, P.; Kerr, Y.H.; Dedieu, G.; 

Chehbouni, A.; Zhang, X.X. 2000. Spatial and temporal dynamics of vegetation in the 
San Pedro River basin area. Agricultural and Forest Meteorology 105: 55-68.  

 
Rice, P.M.; Dupuis, V. 2009. Flowering rush: An invasive aquatic macrophyte infesting the 

headwaters of the Columbia river system. 1-11. Available at Center for Invasive Plant 
Management (CIPM). http://www.weedcenter.org/projects-spatial.html. 

 
Rice, P.M.; Reddish, M.; Dupuis, V.; Mitchell, A. 2010. Flowering Rush Mapping and Spatial 

Prediction Model. Available at Center for Invasive Plant Management (CIPM) 
http://www.weedcenter.org/research/docs/Flowering%20Rush%20Spatial%20Final%20R
eport.pdf   

 
Santos, M.J.; Anderson, L.W.; Ustin, S.L. 2011. Effects of invasive species on plant 

communities: an example using submersed aquatic plants at the regional scale. Biological 
Invasions 13: 443-457.  

 
Schmid, T.; Koch, M.; Gumuzzio, J.; Mather, P.M. 2004. A spectral library for a semi-arid 

wetland and its application to studies of wetland degradation using hyperspectral and 
multispectral data. International Journal of Remote Sensing 25(13): 2485-2496. 

 
Shao, G.; Wu. J. 2008. On the accuracy of landscape pattern analysis using remote sensing data. 

Landscape Ecology 23: 505-511.  
 
Small, C. 2001. Estimation of urban vegetation abundance by spectral mixture analysis. 

International Journal of Remote Sensing 22(7): 1305-1334. 
 
Small, C. 2003. High spatial resolution spectral mixture analysis of urban reflectance. Remote 

Sensing of Environment 88: 170-186. 
 
Souza Jr, C.; Firestone, L.; Silva, L.M.; Roberts, D. 2003. Mapping forest degradation in the 

Eastern Amazon from SPOT 4 through spectral mixture models. Remote Sensing of 
Environment 87: 494-506.  

 
Tuanmu, M.; Viña, A.; Bearer, S.; Xu, W.; Ouyang, Z.; Zhang, H.; Liu, J. 2010. Mapping 

understory vegetation using phonological characteristics derived from remotely sensed 
data. Remote Sensing of Environment 114: 1833-1844.  

 

http://www.weedcenter.org/projects-spatial.html
http://www.weedcenter.org/research/docs/Flowering%20Rush%20Spatial%20Final%20Report.pdf
http://www.weedcenter.org/research/docs/Flowering%20Rush%20Spatial%20Final%20Report.pdf


30 
 

Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. 2003. Remote 
Sensing for biodiversity science and conservation. TRENDS in Ecology and Evolution 
18(6): 307-16. 

 
Underwood, E.; Ustin, S.; Dipietro, D. 2003. Mapping Nonnative Plants Using Hyperspectral 

Imagery. Remote Sensing of Environment 86(2): 150-61.  
 
Ustin, S.L.; Dipietro, D.; Olmstead, K.; Underwood, K.; Scheer, G.J. 2002. Hyperspectral 

Remote Sensing for Invasive Species Detection and Mapping. Geoscience and Remote 
Sensing Symposium 3: 1658-1660. 

 
U.S. Fish and Wildlife Service  Ottawa National Wildlife Refuge (USFWS ONWR). 2012. 

http://www.fws.gov/refuges/profiles/index.cfm?id=31540 Accessed March 18, 2012.  
 
Vincent, R.; Qin, X.; McKay, R.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. 2004. 

Phycocyann detection from LANDSAT TM data for mapping cyanobacterial blooms in 
Lake Erie. Remote Sensing of Environment 89: 381-392.  

 
Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X. 2009. Understory Bamboo Discrimination 

Using a Winter Image. Photogrammetric Engineering & Remote Sensing 75(1): 37-47.  
 
Windle, P.N.; Kranz, R.H.; La, M. 2008. Invasive Species in Ohio Pathways, Policies, and Costs. 

Union of Concerned Scientists: 1-109. 
 
Wright, C.; Gallant, A. 2007. Improved wetland remote sensing in Yellowstone National Park 

using classification trees to combine TM imagery and ancillary environmental data. 
Remote Sensing of Environment 107: 582-605.  

 
Wu, C. 2004. Normalized spectral mixture analysis for monitoring urban composition using 

ETM+ imagery. Remote Sensing of Environment 93: 480-492. 
 
Xie, Y.; Sha, Z.; Yu, M. 2008. Remote sensing imagery in vegetation mapping: a review. Journal 

of Plant Ecology 1(1): 9-23.  
 
Xu, M.; Watanachaturaporn, P.; Varshney, P.K.; Arora, M.J. 2005. Decision tree regression for 

soft classification of remote sensing data. Remote Sensing of Environment 97: 322-336.  
 
Yang, C.; Everitt, J.H.; Murden, D. 2011. Evaluating high resolution SPOT 5 satellite imagery 

for crop identification. Computers and Electronics in Agriculture 75: 347-354.  
 
Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. 2005. Land cover classification and 

change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal 
Landsat remote sensing. Remote Sensing of Environment 98: 317-328.  

 

http://www.fws.gov/refuges/profiles/index.cfm?id=31540


31 
 

Zambon, M.; Lawrence, R.; Bunn, A.; Powell, S. 2006. Effect of Alternative Splitting Rules on 
Image Processing Using Classification Tree Analysis. Photogrammatic Engineering & 
Remote Sensing 72(1): 25-30.  

 
Zhang, Y.; Lu, D.; Yang, B.; Sun, C.; Sun, M. 2011. Coastal wetland vegetation classification 

with a Landsat Thematic Mapper image. International Journal of Remote Sensing 32(2): 
545-561. 

  



32 
 

APPENDIX A: FIGURES 
 

 

 
 
Figure 1: Ottawa National Wildlife Refuge (ONWR) study area with subarea boundaries, and 
sampling locations.   
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Figure 2: Predetermined vegetation classes and the percent cover associated with the 
observations made during field data collection  
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Figure 3: Methodology used in current study 
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Figure 4: Classification tree with a kappa of 0.567. Predictor variables include bands 1 (green), 2 
(red), 3 (near-infrared), and NDVI.  
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Figure 5: Prediction map derived from the aerial imagery using CTA. Map includes Flowering 
rush (FR), Flowering Rush mixed with Water (H2O), and Flowering Rush Mixed with 
Vegetation (MIX).  
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Figure 6: Percentage of the total pixels for each predicted endmember. a) Percentage of the total 
pixels for the subsets, and b) percentage of the total pixels for the entire map (Figure 5). 
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Figure 7: Endmembers separability plot using Landsat TM bands 2(green), 3(red), 4(nir), NDVI, 
ratio (2/4), and ratio (3/4).  
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Figure 8: Linear spectral unmixing fraction maps for the three selected endmembers derived from 
Landsat TM imagery. a) flowering rush, b) flowering rush mixed with other vegetation, c) 
flowering rush mixed with water, and the d) residual image with the total error for each pixel.  
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APPENDIX B: TABLES 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Split Type Pruning (%) Kappa 
 (%) 

Gini 1.8 0.459 
Entropy 1.8 0.393 
Ratio 1.8 0.359 
Gini 1.5 0.465 
Gini 2.0 0.465 
Gini 1.3 0.567 
Ratio 1.5 0.359 
Ratio 1.0 0.435 
Entropy 1.0 0.472 
Entropy 2.0 0.382 
Entropy 0.8 0.497 

 

 
Table 1: Comparative accuracies for classification of the 2011 aerial imagery of ONWR. 
Inputs: G,R,NIR, and NDVI 
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  FR H2O MIX Total 
PA 
(%) 

EO 
(%) 

EC 
(%) 

FR 15 3 3 21 71.4 28.6 31.8 
H2O 2 13 3 18 72.2 27.8 43.5 
MIX 5 7 32 44 72.7 27.3 15.8 
Total 22 23 38 83 

   CA (%) 68.2 56.5 84.2 
    

 

Table 2: The number of correctly classified pixels, the producer’s accuracy (PA), consumer’s 
accuracy (CA), error of emission (EO), and error of commission (EC) for each endmember from 
the final CTA map. 
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Separability between: Transformed 
Divergence 

Flowering rush (FR) and flowering 
rush mixed with water (H2O) 1995.79 

Flowering rush (FR) and flowering 
rush mixed with other vegetation 

(MIX) 
1919.61 

Flowering rush mixed with water 
(H2O) and flowering rush mixed 

with other vegetation (MIX) 
2000.00 

Average over all pairwise 
combinations 1971.80 

 

 
Table 3: Transformed divergence separability between  the three endmembers of FR, H2O, and 
MIX 
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  %  

Coverage 
per pixel 

(%) FR  H2O  MIX  
0-20 90 57 43 
20-40 2 3 2 
40-60 2 3 2 
60-80 2 3 2 
80-100 4 35 51 

 

 

Table 4: Percentage of the total pixels for each endmember corresponding to the coverage (%) 
per pixel.  
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Coverage 
per Pixel 
(%) 

   FR MIX H2O 
0-20 10 20 7 
20-40 2 0 1 
40-60 1 2 2 
60-80 5 1 4 
80-100 3 21 4 
Total 21 44 18 

 

 
Table 5: Validation of fraction maps 
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